Endomorphin-1: induction of motor behavior and lack of receptor desensitization.

نویسندگان

  • A Mehta
  • G Bot
  • T Reisine
  • M F Chesselet
چکیده

The endomorphins are recently discovered endogenous agonists for the mu-opioid receptor (Zadina et al., 1997). Endomorphins produce analgesia; however, their role in other brain functions has not been elucidated. We have investigated the behavioral effects of endomorphin-1 in the globus pallidus, a brain region that is rich in mu-opioid receptors and involved in motor control. Bilateral administration of endomorphin-1 in the globus pallidus of rats induced orofacial dyskinesia. This effect was dose-dependent and at the highest dose tested (18 pmol per side) was sustained during the 60 min of observation, indicating that endomorphin-1 does not induce rapid desensitization of this motor response. In agreement with a lack of desensitization of mu-opioid receptors, 3 hr of continuous exposure of the cloned mu receptor to endomorphin-1 did not diminish the subsequent ability of the agonist to inhibit adenylate cyclase activity in cells expressing the cloned mu-opioid receptor. Confirming the involvement of mu-opioid receptors, the behavioral effect of endomorphin-1 in the globus pallidus was blocked by the opioid antagonist naloxone and the mu-selective peptide antagonist Cys(2)-Tyr(3)-Orn(5)-Pen(7) amide (CTOP). Furthermore, the selective mu receptor agonist [d-Ala(2)-N-Me-Phe(4)-Glycol(5)]-enkephalin (DAMGO) also stimulated orofacial dyskinesia when infused into the globus pallidus, albeit transiently. Our findings suggest that endogenous mu agonists may play a role in hyperkinetic movement disorders by inducing sustained activation of pallidal opioid receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endomorphin-2: a biased agonist at the μ-opioid receptor.

Previously we correlated the efficacy for G protein activation with that for arrestin recruitment for a number of agonists at the μ-opioid receptor (MOPr) stably expressed in HEK293 cells. We suggested that the endomorphins (endomorphin-1 and -2) might be biased toward arrestin recruitment. In the present study, we investigated this phenomenon in more detail for endomorphin-2, using endogenous ...

متن کامل

Involvement of spinal protein kinase Cgamma in the attenuation of opioid mu-receptor-mediated G-protein activation after chronic intrathecal administration of [D-Ala2,N-MePhe4,Gly-Ol(5)]enkephalin.

The present study was designed to investigate the role of a protein kinase C (PKC) isoform in the uncoupling of the mu-opioid receptor from G-proteins after repeated intrathecal injection of a selective mu-receptor agonist, [D-Ala(2),N-MePhe(4),Gly-ol(5)]enkephalin (DAMGO), in the spinal cord of mice. The activation of G-proteins by opioids was measured by monitoring the guanosine-5'-o-(3-[(35)...

متن کامل

Role of G Protein–Coupled Receptor Kinases 2 and 3 in m-Opioid Receptor Desensitization and Internalization s

There is ongoing debate about the role of G protein–coupled receptor kinases (GRKs) in agonist-induced desensitization of the m-opioid receptor (MOPr) in brain neurons. In the present paper, we have used a novel membrane-permeable, small-molecule inhibitor of GRK2 and GRK3, Takeda compound 101 (Cmpd101; 3-[[[4-methyl-5-(4-pyridyl)-4H-1,2,4-triazole-3-yl] methyl] amino]N-[2-(trifuoromethyl) benz...

متن کامل

Role of G Protein–Coupled Receptor Kinases 2 and 3 in m-Opioid Receptor Desensitization and Internalization

There is ongoing debate about the role of G protein–coupled receptor kinases (GRKs) in agonist-induced desensitization of the m-opioid receptor (MOPr) in brain neurons. In the present paper, we have used a novel membrane-permeable, small-molecule inhibitor of GRK2 and GRK3, Takeda compound 101 (Cmpd101; 3-[[[4-methyl-5-(4-pyridyl)-4H-1,2,4-triazole-3-yl] methyl] amino]N-[2-(trifuoromethyl) benz...

متن کامل

Role of G Protein-Coupled Receptor Kinases 2 and 3 in μ-Opioid Receptor Desensitization and Internalization.

There is ongoing debate about the role of G protein-coupled receptor kinases (GRKs) in agonist-induced desensitization of the μ-opioid receptor (MOPr) in brain neurons. In the present paper, we have used a novel membrane-permeable, small-molecule inhibitor of GRK2 and GRK3, Takeda compound 101 (Cmpd101; 3-[[[4-methyl-5-(4-pyridyl)-4H-1,2,4-triazole-3-yl] methyl] amino]-N-[2-(trifuoromethyl) ben...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 12  شماره 

صفحات  -

تاریخ انتشار 2001